Monthly Archives: August 2016

Automation and mobility to create a smarter world

Daniela Rus loves Singapore. As the MIT professor sits down in her Frank Gehry-designed office in Cambridge, Massachusetts, to talk about her research conducted in Singapore, her face starts to relax in a big smile.

Her story with Singapore started in the summer of 2010, when she made her first visit to one of the most futuristic and forward-looking cities in the world. “It was love at first sight,” says the Andrew (1956) and Erna Viterbi Professor of Electrical Engineering and Computer Science and the director of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL). That summer, she came to Singapore to join the Singapore-MIT Alliance for Research and Technology (SMART) as the first principal investigator in residence for the Future of Urban Mobility Research Program.

“In 2010, nobody was talking about autonomous driving. We were pioneers in developing and deploying the first mobility on demand for people with self-driving golf buggies,” says Rus. “And look where we stand today! Every single car maker is investing millions of dollars to advance autonomous driving. Singapore did not hesitate to provide us, at an early stage, with all the financial, logistical, and transportation resources to facilitate our work.”

Since her first visit, Rus has returned each year to follow up on the research, and has been involved in leading revolutionary projects for the future of urban mobility. “Our team worked tremendously hard on self-driving technologies, and we are now presenting a wide range of different devices that allow autonomous and secure mobility,” she says. “Our objective today is to make taking a driverless car for a spin as easy as programming a smartphone. A simple interaction between the human and machine will provide a transportation butler.”

The first mobility devices her team worked on were self-driving golf buggies. Two years ago, these buggies advanced to a point where the group decided to open them to the public in a trial that lasted one week at the Chinese Gardens, an idea facilitated by Singapore’s Land and Transportation Agency (LTA). Over the course of a week, more than 500 people booked rides from the comfort of their homes, and came to the Chinese Gardens at the designated time and spot to experience mobility-on-demand with robots.

The test was conducted around winding paths trafficked by pedestrians, bicyclists, and the occasional monitor lizard. The experiments also tested an online booking system that enabled visitors to schedule pickups and drop-offs around the garden, automatically routing and redeploying the vehicles to accommodate all the requests. The public’s response was joyful and positive, and this brought the team renewed enthusiasm to take the technology to the next level.

National Inventors Hall of Fame

Is the Internet old or new? According to MIT professor of mathematics Tom Leighton, co-founder of Akamai, the internet is just getting started. His opinion counts since his firm, launched in 1998 with pivotal help from Danny Lewin SM ’98, keeps the internet speedy by copying and channeling massive amounts of data into orderly and secure places that are quick to access. Now, the National Inventors Hall of Fame (NIHF) has recognized Leighton and Lewin’s work, naming them both as 2017 inductees.

“We think about the internet and the tremendous accomplishments that have been made and, the exciting thing is, it’s in its infancy,” Leighton says in an Akamai video. Online commerce, which has grown rapidly and is now denting mall sales, has huge potential, especially as dual screen use grows. Soon mobile devices will link to television, and then viewers can change channels on their mobile phones and click to buy the cool sunglasses Tom Cruise is wearing on the big screen. “We are going to see [that] things we never thought about existing will be core to our lives within 10 years, using the internet,” Leighton says.

Leighton’s former collaborator, Danny Lewin, was pivotal to the early development of Akamai’s technology. Tragically, Lewin died as a passenger on an American Airlines flight that was hijacked by terrorists and crashed into New York’s World Trade Center on Sept. 11, 2001. Lewin, a former Israeli Defense Forces officer, is credited with trying to stop the attack.

According to Akami, Leighton, Lewin, and their team “developed the mathematical algorithms necessary to intelligently route and replicate content over a large network of distributed servers,” which solved congestion that was then becoming known as the “World Wide Wait.” Today the company delivers nearly 3 trillion internet interactions each day.

The NIHF describes Leighton and Lewin’s contributions as pivotal to making the web fast, secure, and reliable. Their tools were applied mathematics and algorithms, and they focused on congested nodes identified by Tim Berners-Lee, inventor of the World Wide Web and an MIT professor with an office near Leighton. Leighton, an authority on parallel algorithms for network applications who earned his PhD at MIT, holds more than 40 U.S. patents involving content delivery, internet protocols, algorithms for networks, cryptography, and digital rights management. He served as Akamai’s chief scientist for 14 years before becoming chief executive officer in 2013.

Popular compiler parallel programs

Compilers are programs that convert computer code written in high-level languages intelligible to humans into low-level instructions executable by machines.

But there’s more than one way to implement a given computation, and modern compilers extensively analyze the code they process, trying to deduce the implementations that will maximize the efficiency of the resulting software.

Code explicitly written to take advantage of parallel computing, however, usually loses the benefit of compilers’ optimization strategies. That’s because managing parallel execution requires a lot of extra code, and existing compilers add it before the optimizations occur. The optimizers aren’t sure how to interpret the new code, so they don’t try to improve its performance.

At the Association for Computing Machinery’s Symposium on Principles and Practice of Parallel Programming next week, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory will present a new variation on a popular open-source compiler that optimizes before adding the code necessary for parallel execution.

As a consequence, says Charles E. Leiserson, the Edwin Sibley Webster Professor in Electrical Engineering and Computer Science at MIT and a coauthor on the new paper, the compiler “now optimizes parallel code better than any commercial or open-source compiler, and it also compiles where some of these other compilers don’t.”

That improvement comes purely from optimization strategies that were already part of the compiler the researchers modified, which was designed to compile conventional, serial programs. The researchers’ approach should also make it much more straightforward to add optimizations specifically tailored to parallel programs. And that will be crucial as computer chips add more and more “cores,” or parallel processing units, in the years ahead.

The idea of optimizing before adding the extra code required by parallel processing has been around for decades. But “compiler developers were skeptical that this could be done,” Leiserson says.

“Everybody said it was going to be too hard, that you’d have to change the whole compiler. And these guys,” he says, referring to Tao B. Schardl, a postdoc in Leiserson’s group, and William S. Moses, an undergraduate double major in electrical engineering and computer science and physics, “basically showed that conventional wisdom to be flat-out wrong. The big surprise was that this didn’t require rewriting the 80-plus compiler passes that do either analysis or optimization. T.B. and Billy did it by modifying 6,000 lines of a 4-million-line code base.”

Schardl, who earned his PhD in electrical engineering and computer science (EECS) from MIT, with Leiserson as his advisor, before rejoining Leiserson’s group as a postdoc, and Moses, who will graduate next spring after only three years, with a master’s in EECS to boot, share authorship on the paper with Leiserson.

Reproduces aspects of human neurolog

IT researchers and their colleagues have developed a new computational model of the human brain’s face-recognition mechanism that seems to capture aspects of human neurology that previous models have missed.

The researchers designed a machine-learning system that implemented their model, and they trained it to recognize particular faces by feeding it a battery of sample images. They found that the trained system included an intermediate processing step that represented a face’s degree of rotation — say, 45 degrees from center — but not the direction — left or right.

This property wasn’t built into the system; it emerged spontaneously from the training process. But it duplicates an experimentally observed feature of the primate face-processing mechanism. The researchers consider this an indication that their system and the brain are doing something similar.

“This is not a proof that we understand what’s going on,” says Tomaso Poggio, a professor of brain and cognitive sciences at MIT and director of the Center for Brains, Minds, and Machines (CBMM), a multi-institution research consortium funded by the National Science Foundation and headquartered at MIT. “Models are kind of cartoons of reality, especially in biology. So I would be surprised if things turn out to be this simple. But I think it’s strong evidence that we are on the right track.”

Indeed, the researchers’ new paper includes a mathematical proof that the particular type of machine-learning system they use, which was intended to offer what Poggio calls a “biologically plausible” model of the nervous system, will inevitably yield intermediary representations that are indifferent to angle of rotation.

Poggio, who is also a primary investigator at MIT’s McGovern Institute for Brain Research, is the senior author on a paper describing the new work, which appeared today in the journal Computational Biology. He’s joined on the paper by several other members of both the CBMM and the McGovern Institute: first author Joel Leibo, a researcher at Google DeepMind, who earned his PhD in brain and cognitive sciences from MIT with Poggio as his advisor; Qianli Liao, an MIT graduate student in electrical engineering and computer science; Fabio Anselmi, a postdoc in the IIT@MIT Laboratory for Computational and Statistical Learning, a joint venture of MIT and the Italian Institute of Technology; and Winrich Freiwald, an associate professor at the Rockefeller University.

System that automatically handles the database

Today, loading a web page on a big website usually involves a database query — to retrieve the latest contributions to a discussion you’re participating in, a list of news stories related to the one you’re reading, links targeted to your geographic location, or the like.

But database queries are time consuming, so many websites store — or “cache” — the results of common queries on web servers for faster delivery.

If a site user changes a value in the database, however, the cache needs to be updated, too. The complex task of analyzing a website’s code to identify which operations necessitate updates to which cached values generally falls to the web programmer. Missing one such operation can result in an unusable site.

This week, at the Association for Computing Machinery’s Symposium on Principles of Programming Languages, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory presented a new system that automatically handles caching of database queries for web applications written in the web-programming language Ur/Web.

Although a website may be fielding many requests in parallel — sending different users different cached data, or even data cached on different servers — the system guarantees that, to the user, every transaction will look exactly as it would if requests were handled in sequence. So a user won’t, for instance, click on a link showing that tickets to an event are available, only to find that they’ve been snatched up when it comes time to pay.

In experiments involving two websites that had been built using Ur/Web, the new system’s automatic caching offered twofold and 30-fold speedups.

“Most very popular websites backed by databases don’t actually ask the database over and over again for each request,” says Adam Chlipala, an associate professor of electrical engineering and computer science at MIT and senior author on the conference paper. “They notice that, ‘Oh, I seem to have asked this question quite recently, and I saved the result, so I’ll just pull that out of memory.’”

“But the tricky part here is that you have to realize when you make changes to the database that some of your saved answers are no longer necessarily correct, and you have to do what’s called ‘invalidating’ them. And in the mainstream way of implementing this, the programmer needs to manually add invalidation logic. For every line of code that changes the database, the programmer has to sit down and think, ‘Okay, for every other line of code that reads the database and saves the result in a cache, which ones of those are going to be broken by the change I just made?’”

Chlipala is joined on the paper by Ziv Scully, a graduate student in computer science at Carnegie Mellon University, who worked in Chlipala’s lab as an MIT undergraduate.

A wide range of shapes and structures

This fall’s new Federal Aviation Administration regulations have made drone flight easier than ever for both companies and consumers. But what if the drones out on the market aren’t exactly what you want?

A new system from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is the first to allow users to design, simulate, and build their own custom drone. Users can change the size, shape, and structure of their drone based on the specific needs they have for payload, cost, flight time, battery usage, and other factors.

To demonstrate, researchers created a range of unusual-looking drones, including a five-rotor “pentacopter” and a rabbit-shaped “bunnycopter” with propellers of different sizes and rotors of different heights.

“This system opens up new possibilities for how drones look and function,” says MIT Professor Wojciech Matusik, who oversaw the project in CSAIL’s Computational Fabrication Group. “It’s no longer a one-size-fits-all approach for people who want to make and use drones for particular purposes.”

The interface lets users design drones with different propellers, rotors, and rods. It also provides guarantees that the drones it fabricates can take off, hover and land — which is no simple task considering the intricate technical trade-offs associated with drone weight, shape, and control.

“For example, adding more rotors generally lets you carry more weight, but you also need to think about how to balance the drone to make sure it doesn’t tip,” says PhD student Tao Du, who was first author on a related paper about the system. “Irregularly-shaped drones are very difficult to stabilize, which means that they require establishing very complex control parameters.”

Du and Matusik co-authored a paper with PhD student Adriana Schulz, postdoc Bo Zhu, and Assistant Professor Bernd Bickel of IST Austria. It will be presented next week at the annual SIGGRAPH Asia conference in Macao, China.

Today’s commercial drones only come in a small range of options, typically with an even number of rotors and upward-facing propellers. But there are many emerging use cases for other kinds of drones. For example, having an odd number of rotors might create a clearer view for a drone’s camera, or allow the drone to carry objects with unusual shapes.

Designing these less conventional drones, however, often requires expertise in multiple disciplines, including control systems, fabrication, and electronics.

“Developing multicopters like these that are actually flyable involves a lot of trial-and-error, tweaking the balance between all the propellers and rotors,” says Du. “It would be more or less impossible for an amateur user, especially one without any computer-science background.”

Media Lab faculty

Fadel Adib SM ’13, PhD ’16 has been appointed an assistant professor in the Program in Media Arts and Sciences at the MIT Media Lab, where he leads the new Signal Kinetics research group. His group’s mission is to explore and develop new technologies that can extend human and computer abilities in communication, sensing, and actuation.

Adib comes to the lab from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), where he received his PhD and master’s degrees in electrical engineering and computer science, supervised by MIT professor of electrical engineering and computer science Dina Katabi. Adib’s doctoral thesis, “Wireless Systems that Extend Our Senses,” demonstrates that wireless signals can be used as sensing tools to learn about the environment, thus enabling us to see through walls, track human gestures, and monitor human vital signs from a distance. His master’s thesis, “See Through Walls with Wifi,” won the best master’s thesis award in computer science at MIT in 2013. He earned his bachelor’s degree in computer and communications engineering from the American University of Beirut, in Lebanon, the country of his birth, where he graduated with the highest GPA in the university’s digitally-recorded history.

“We can get your locations, we can get your gestures, we can get your breathing,” Adib said at a Media Lab event in October 2016. “And we can even get your heart rate—all without putting any sensor on your body. This is exactly what our research is about.” Signal Kinetics researchers tap into the invisible signals that surround us — from WiFi to brain waves. The aim is to uncover, analyze, and engineer these natural and human-made networks, drawing on tools from computer networks, signal processing, machine learning, and hardware design.

“We are living in a sea of radio waves,” Adib told the Media Lab audience. “As our bodies move, we modulate these radio waves, similar to how you create waves when you move around in a pool of water. While we cannot see these with our naked eye, we can extract them and we can build intelligence in the environment to enable a large number of applications and extend our senses using wireless technology.” The technology is applicable to a broad range of needs: from monitoring an infant’s breathing or an elderly person who has fallen, to determining whether someone has sleep apnea, to detecting survivors in a burning building. The group’s research also has potential applications for gaming and filmmaking.

In 2015, Forbes magazine selected Adib among the 30 Under 30 Who Are Moving the World in Enterprise Technology. In 2014, MIT Technology Review chose him as one of the world’s 35 top innovators under the age of 35. His research has been identified as one of the 50 ways MIT has transformed computer science over the past 50 years.

“Fadel’s work in wireless sensing is groundbreaking and opens up all sorts of new opportunities,” says the Media Lab’s Pattie Maes, the Alex W. Dreyfoos Professor of Media Technology and academic head of the Program in Media Arts and Sciences. “I can’t wait to see what impact his presence in the lab will have on many of the research topics that we focus on, including Smart Cities, Responsive Environments, Extreme Bionics, Extended Intelligence, Tools for Health and Wellbeing, and more.”

How the system can detect a conversation

It’s a fact of nature that a single conversation can be interpreted in very different ways. For people with anxiety or conditions such as Asperger’s, this can make social situations extremely stressful. But what if there was a more objective way to measure and understand our interactions?

Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and Institute of Medical Engineering and Science (IMES) say that they’ve gotten closer to a potential solution: an artificially intelligent, wearable system that can predict if a conversation is happy, sad, or neutral based on a person’s speech patterns and vitals.

“Imagine if, at the end of a conversation, you could rewind it and see the moments when the people around you felt the most anxious,” says graduate student Tuka Alhanai, who co-authored a related paper with PhD candidate Mohammad Ghassemi that they will present at next week’s Association for the Advancement of Artificial Intelligence (AAAI) conference in San Francisco. “Our work is a step in this direction, suggesting that we may not be that far away from a world where people can have an AI social coach right in their pocket.”

As a participant tells a story, the system can analyze audio, text transcriptions, and physiological signals to determine the overall tone of the story with 83 percent accuracy. Using deep-learning techniques, the system can also provide a “sentiment score” for specific five-second intervals within a conversation.

“As far as we know, this is the first experiment that collects both physical data and speech data in a passive but robust way, even while subjects are having natural, unstructured interactions,” says Ghassemi. “Our results show that it’s possible to classify the emotional tone of conversations in real-time.”

The researchers say that the system’s performance would be further improved by having multiple people in a conversation use it on their smartwatches, creating more data to be analyzed by their algorithms. The team is keen to point out that they developed the system with privacy strongly in mind: The algorithm runs locally on a user’s device as a way of protecting personal information. (Alhanai says that a consumer version would obviously need clear protocols for getting consent from the people involved in the conversations.)

How it works

Many emotion-detection studies show participants “happy” and “sad” videos, or ask them to artificially act out specific emotive states. But in an effort to elicit more organic emotions, the team instead asked subjects to tell a happy or sad story of their own choosing.